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The quasi-elastic light scattering has become an established technique for a rapid and quantitative charac-
terization of an average motility pattern of motile bacteria in suspensions. Essentially all interpretations
of the measured light scattering intensities and spectra so far are based on the Rayleigh-Gans-Debye (RGD)
approximation. Since the range of sizes of bacteria of interest is generally larger than the wavelength of
light used in the measurement, one is not certain of the justification for the use of the RGD approximation.
In this paper we formulate a method by which both the scattering intensity and the quasi-elastic light scat-
tering spectra can be calculated from a rigorous scattering theory. For a specific application we study the
case of bacteria Escherichia coli (about 1 um in size) by using numerical solutions of the scattering field am-
plitudes from a prolate spheroid, which is known to simulate optical properties of the bacteria well. We
have computed (1) polarized scattered light intensity vs scattering angle for a randomly oriented bacteria
population; (2) polarized scattered field correlation functions for both a freely diffusing bacterium and for
a bacterium undergoing a straight line motion in random directions and with a Maxwellian speed distribu-
tion; and (3) the corresponding depolarized scattered intensity and field correlation functions. In each case
sensitivity of the result to variations of the index of refraction and size of the bacterium is investigated. The
conclusion is that within a reasonable range of parameters applicable to E. coli, the accuracy of the RGD is
good to within 10% at all angles for the properties (1) and (2), and the depolarized contributions in (3) are
generally very small.

1. Introduction

Light scattering intensity measurements from small
particles suspended in fluids have long been used for
characterization of sizes and shapes of the particles.",2
A natural application of this technique is to use it for the
size assay of bacteria in liquid suspension.3 In 1971
Nossal et al. 4 demonstrated that the quasi-elastic light
scattering spectrum, or equivalently the time correlation
function of the scattered field amplitude, depends
sensitively on the speed distribution of a collection of
motile bacteria homogeneously suspended in liquid
media. Since then many workers have used this tech-
nique to study various motility characteristics of bac-
teria and microorganisms under different controls.5

Recently, in a series of articles6-8 we undertook to
systematically analyze theoretically and test experi-

Shoji Asano is with Goddard Institute for Space Studies, New York,
New York 10025. The first two authors named were with Massa-
chusetts Institute of Technology, Nuclear Engineering Department,
Cambridge, Massachusetts 02139; M. Kotlarchyk is now with Polaroid
Corporation, Equipment & Facility Engineering, Waltham, Massa-
chusetts 02154.

Received 11 January 1979.
0003-6935/79/142470-10$00.50/0.
© 1979 Optical Society of America.

mentally the effects of finite size, shape, and structure
of a specific model bacteria Escherichia coli on the
measured angular dependence of polarized scattered
intensity and also on the field amplitude correlation
function. The basic scattering amplitude from a finite
size particle was computed in the RGD approximation
in Ref. 6 and used to predict the measured intensity
distribution and the angular dependence of the corre-
lation function. We modeled the E. coli bacterium as
a coated prolate spheroid of semimajor and minor axes
a and b, having a cell wall thickness t. In Ref. 7 we
showed that this model of E. coli reproduces most of the
light scattering properties well with a reasonable choice
of a set of parameters, except that the angular depen-
dence of the halfwidth of the correlation function can-
not be accounted for by assuming a simple straight line
translation of the bacteria in random direction. We
therefore in Ref. 8 extended our calculation to take into
account possible translation-rotational motions of the
spheroid. We showed there that a large part of the
discrepancy in the halfwidth of the correlation function
at large angle can be attributed to superposition of a
helical motion of E. coli around the direction of the
translation. A further refinement of the model of mo-
tion taking into account sequential "run" and "twiddle"
motions was presented in Ref. 9.

Results of these studies6 -9 show that in treating the
light scattering data of micron size particles the finite
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size, shape, and structural effects play an important
role, besides the more obvious dependence on the modes
of motion of particles themselves. It was shown6 that
using the RGD approximation these finite size, shape,
and structural effects can be incorporated into the in-
tensity and correlation function calculations quite
straightforwardly. However, the RGD approximation
is valid only in the limit of small size and small index of
refraction difference between the particle and the sur-
rounding medium. More specifically it is valid
whenl' 2

im -11 << 1, (1)

kdlm-11 << 1, (2)

where m- n/no is the ratio of index of refraction of the
particle to that of the surrounding medium, d is the
characteristic dimension of the particle, and k = 27r/X,
where X is the wavelength of light in the medium. For
E. coli our previous study7 shows that the intensity
distribution data are consistent with a choice of the
spheroid parameters a = 0.70 um, b = 0.36 Atm, and
index of refraction of the particle n = 1.342. Taking the
medium to be water with no = 1.333 we have m - 1 =
0.007, which is indeed small. But 2ka m - 1 = 0.154,
which is not obviously small enough. On the other hand
if we take a literative value 3 of n = 1.370, then m - 1 =
0.03 and 2ka m-1 = 0.68. In this latter case there
is some doubt as to whether the RGD approximation is
useful.

Under this circumstance it is desirable to be able to
establish at least the range of errors one could expect in
consistently using the RGD approximation for calcu-
lations of light scattering properties of a microorganism.
This estimate is possible only when a calculation can be
made based on a rigorous scattering theory for the given
particle geometry. Fortunately a numerical solution
of the scattering amplitude from a spheroid is now
available.10 We can therefore test the accuracy of the
RGD approximation against this rigorous scattering
theory calculation for a simplified model of E. coli-a
solid spheroid.

In Sec. II we formulate a general procedure by which
the scattered field amplitude correlation function can
be calculated for a particle situated at an arbitrary po-
sition R(t) from the solution for a particle situated at
the origin. At time zero this correlation function gives
the intensity distribution, and at finite time it gives the
desired time correlation function. For computing
quantities of interest in experiments a laboratory
coordinate system has to be used which is not the body
fix coordinate system convenient for the solution of the
boundary value problem. Therefore, a coordinate
transformation between the two coordinate systems is
described. In Sec. III we briefly describe the computer
code which is used for the correlation function calcu-
lations. In Sec. IV we discuss the results in terms of the
intensity distribution, the correlation function for a
diffusing spheroid, and the correlation function for a
spheroid moving in a straight line in random directions
with a Maxwellian speed distribution and then discuss
the depolarized contributions. We conclude in Sec. V

with an assessment of accuracy of the RGD approxi-
mation in the case of E. coli and some remarks on in-
terpretation of quasi-elastic light scattering spectra of
other microorganisms. To our knowledge, this work
seems to be the first treatment of the quasi-elastic light
spectra in terms of a rigorous scattering theory.

11. Light Scattering Theory

A complete solution to the problem of scattering of
light1' 2 by a homogeneous nonmagnetic particle of index
of refraction n (called region I) immersed in a homo-
geneous dielectric medium of index of refraction no
(called region II) can be obtained from the Maxwell's
equations

7 x E = ik,,B,

V X = -ik n2(jr),

(3)

(4)

in regions I and II with the following boundary condi-
tions:

(a) in region I, where n () n, there are the internal
fields (i,BL);

(b) in region II, where n(T) rio, there are the
scattered fields (ESBS) plus the incident fields

Po(rt) = EoZ exp[i(T * 7 - wt)] (5)

and its magnetic counterpart;
(c) the tangential components of the fields in I and

II are continuous at the boundary between the particle
and the medium.

We use notations k, = w/c, wavenumber in vacuum;
and k = nok,, wavenumber in the medium; and e the
incident field polarization vector.

Figure 1 illustrates a typical scattering geometry.
The incident wave vector k is in the 9 direction with the
polarization vector e along the i direction. The scat-
tered wave vector ' is taken to be in the x - y plane
with a scattering angle (). A unit vector 6 denotes the
symmetry axis of the particle with its direction specified

,(00.1 V ,1 2'e3)

k (0, ,O)

k (sin i),cose,O)

Fig. 1. Laboratory coordinate system showing the directions of in-
cident and scattered waves with their respective polarization vectors.

' is a unit vector specifying the orientation of the ellipsoid.
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by angles (O8,,k). In a most general case involving an
arbitrary incident polarization, one can decompose the
incident field into a transverse component (perpen-
dicular to the scattering plane) and a parallel compo-
nent (parallel to the scattering plane), each specified by
a unit vector to and 10, respectively. The scattered
fields are then also decomposable into transverse and
parallel components each specified by a unit vector 
and . Since the Maxwell's equations are linear we have
in general a linear relation between the incident and the
scattered electric fields2

(Et (SIS4 )(Eot exp(ikr) exp(-ikT ), (6)
kE,,) SS)E 1 -ikr

where the elements of the scattering matrix Si are di-
mensionless scattering amplitudes which depend on
relative orientations of the four vectors: , c, k, and '.
In the usual scattering geometry depicted in Fig. 1, E01
= 0, and Eot = E0 (Rt) as given in Eq. (5). The polarized
scattered field amplitude is given by SI, and the depo-
larized scattered field amplitude is given by S3. The
scattering amplitudes Si can be determined by solving
the Maxwell's equation as a boundary value problem as
mentioned above.

A. Integral Formulation of the Scattering Theory and
the Rayleigh-Gans-Debye Approximation6

The partial differential equation given in Eqs. (3) and
(4) can be converted to an integral equation. This can
be accomplished by eliminating P from Eqs. (3) and (4)
to get

(7)

Equation (7) is then converted into an integral equation
by using Green's function G for the Helmholtz operator
on the left-hand side of the equation. Aside from a time
factor exp(-iwt) the total field satisfies an integral
equation

E(r) Eo(7) + r3 dGr'GJ( - ') k2(n 2 - n)E(r'), (8)

where the Green's tensor G( - ') is given by

G(R - + 1 +.V) ep(ikR),+(R k2 4(9)

andR= -r'j.
In the wave zone where kR >> 1 and R >> dimension

of the particle, the Green's tensor simplifies to
-(R= (-1 p) exp(ikr - ik' * r)

4irr
(10)

where k' = kP is the scattered wave vector.
In Eq. (8), E0(T) represents the spatial part of the

incident field, and therefore the scattered field is given
by

E(, = 3 d3r'G( - ') k 2(m 2
- 1)P(p'). (11)

Notice that the scattered field is completely determined
by knowing only the internal field Ei (r) inside the
particle since the integration in Eq. (11) is over the
volume of the particle. It is also a function of the rel-
ative index of refraction m = n/no only.

If the scattering is weak compared with the incident
field, Es (r) can be obtained as an iterated solution

Es (7) = : E (),
-1l

(12)

where

En r)= k 2 n(m2
- 1)n 5 d 3

r'U(7 - 7')

* X d3r('-r -") .f.

3 f d 3 r(n)[i(n-1) - r(n)] .ro[F(n)]
G (13)

Since all vectors r (n) represent points somewhere inside
the particle, it is sensible to rewrite them in terms of
relative position vectors p (n) with respect to the center
of mass position R, i.e.,

7(n) = + T(n) (14)

We also use the far-field approximation (10) for G(F -
r') and Eq. (3) for the incident field EO[r(n)] to get

En V,0 )= An(r)an[u(t),kk',e exp[i7*Rk(t) - it],

where

An(r) = Eok 2
n(m

2
- )nVn exp(ikr)

47rr

1 r
n= - d3p'(l-rP) exp(-k' 

Vn J

.fd3p(n)(p(n-1) - p(n)] * e exp[iT - T(n)]

(15)

(16)

(17)

and = k - k' is the scattering vector.
As one can see from Eq. (17) the vector dynamic form

factor an indeed depends on the relative orientation of
the four vectors 0, k, ', and . It is also time dependent
because orientation of the particle 0(t) changes in time
due to either the rotational diffusion or motion. The
RGD approximation amounts to retain only the lowest
order n = 1 term in the expansion (12). From Eqs. (15),
(16), and (17) we have

E1(R,t) = Eok 2 (m 2
-1)V exp(ikr) al[6(t),4] exp[iqT R(t) - iwt],

47rr

(18)

where the dynamic form factor has a particularly simple
form

UJOt,4 = (1-P04) If d3p'exp(iq '). (19)

U1 in the RGD approximation depends only on relative
orientation of two vectors v(t) and q. One can see from
Eqs. (18) and (19) that in this approximation the time
dependence of the scattered field E1(R,t) comes from
two sources: rotational motion of the particle entering
through the dynamic form factor (t) and translational
motion through the exponential factor exp[iq7-R(t) -
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iwt]. In a typical scattering geometry depicted in Fig.
1, (T - PP) = , and the scattered field is completely
polarized. The form factor in Eq. (19) can be evaluated
analytically for many symmetric bodies7 and, in par-
ticular, for an ellipsoid of revolution (or a spheroid) with
semimajor and minor axes a and b, it is

Vfd3 (i) = 3(u), (20)
V P ~~~U

where

u = q[a2 U2 + b 2(1- 2)]1/2, (21)

and ,i -0, the cosine of the relative angle between the
Q vector and the symmetry axis of the body.

It is instructive to also write out the second-order
term

E2(7,t) = Eok 4 (m 2
- 1)2 V2 p(i) Z2 (t) exp[iq R(t) - it], (22)

4irr

1
U24) = 2 5 d 3 p'(1 - PP) exp(-ik' .

*5 d3p"G(' - p') * e exp(ik * p") (23)

We see that already in this order the dynamic form
factor A2 (t) depends on relative orientation of all four
vectors 0, 4, P, and e. The scattered field is no longer
polarized, but contains a depolarized component be-
cause of the presence of a tensor G ('-p") in Eq. (23).
While we can depict the first-order term E1 (Rlt) as due
to the sum of all single scattering events each occurring
at p' in the body, we can picture the second-order terms
E2 ( 1 t) as due to the sum of all double scattering events
occurring at ' and p" in the body, as shown in Fig. 2.
Two stars in the body represent a typical double scat-
tering event. In fact the nth order term in Eq. (12) can
likewise be interpreted as the nth-order multiple scat-

\ M.
--TM 

Fig. 2. Coordinate system for the A-Y theory. The ellipsoid is ori-
ented along the z axis. The incident wave vector k lies in the = 00
plane. The scattered wave vector k is defined by the polar angles 0
and . The figure shows a double-scattering event within the cell.
(x,y,z) in this figure, although in the same notation, obviously differs

from the one in Fig. 1.

tering contribution to the scattered field. If the series
(10) converges, the resultant scattered field should be
identical to that calculated by solving the boundary
value problem outlined in the beginning of this sec-
tion.

By looking at the form of the nth order term (15) we
can can make an important observation that the scat-
tering amplitude calculated for a particle situated at
position R is simply related to the scattering amplitude
calculated for a particle situated at the origin by a
multiplicative factor exp(ii.R). Thus the scattering
matrix for a particle situated at R is given in terms of the
scattering matrix defined in Eq. (4) by

S(R) = S exp(iq R). (24)

We also know that when the expansion (12) converges
the scattering matrix can be written as

S = 3 W.
n=O

(25)

For example, by using Eqs. (18) and (19) we see that for
the lowest order the polarized scattering amplitude is
given by

Si1) 4=-rk3(M2 - 1)fJd3p'exp(iij -p-')

VI) = -cos si), S(DP = S = (26)

B. Asano-Yamamoto Formalism for Scattering from a
Spheroid

A rigorous solution of electromagnetic wave scattering
from a spherical particle as a boundary value problem
was achieved by Mie"1 in 1908, and the method is well
described in Ref. 1. Due to symmetry of a sphere the
scattering matrix S(&) is only a function of &P and is
therefore time-independent. From the point of view
of the dynamic light scattering, it is of little interest
because the time dependence of the field correlation
function comes entirely from the translational factor
exp[ii.R(t)], and as far as the time dependence is con-
cerned it is equivalent to a point particle. On the other
hand as soon as the shape of the particle deviates from
sphericity a new vector v(t) comes into the picture, and
the dynamic form factor becomes time-dependent.
The light scattering spectrum thus reflects the rota-
tional as well as the translational motions of the par-
ticle.

Extension of the Mie theory to a particle with a
spheroidal geometry was done by Asano and Yamamoto
(A-Y) in 1975, and details of the solution were described
in Ref. 10. A-Y used a coordinate system as depicted
in Fig. 2 where the 0 vector points always in the z di-
rection. The incident wave vector k lies in x-z plane
with an inclination angle P from the z axis. The scat-
tered vector k' is in an arbitrary direction specified by
polar angles (04). Although A-Y provides an exact
solution to the scattering problem, in order for this
formalism to be useful, we must relate the coordinate
system used by A-Y (where 0 is fixed) to the coordinate
system in our laboratory setup (where kk', and e are
fixed).
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In the A-Y coordinates the scattered fields are related
to the incident fields by

(ETE) = ( T11T21)(EoTE exp(ikr) exp(-iT - ), (27)
~ETM) -T12T22AEOTM -ikr

where ETE and ETM are the TE and TM components,
respectively, of the scattered field and likewise EOTE
and EOTM that of the incident field. In order to relate
the scattering matrix T in Eq. (27) to that of S in Eq.
(16) we must express 1 2

( ) = (28)
EOTM/ kE.1JETE -(, (29)

_ EMl kE,1 /

where matrices A and B are functions of angles of A 0,
and 0, defined in Fig. 2. Then, from Eqs. (27) and (6)
we obtain a relation

S= (B)P-T-A
where

A - /
2 (cosl sin0 coso - sinl cos0 -sin0 sino

(sin0 sino cos sinO coso, -sin cosO |

- C'y1 /2 sintcos0 cost -cossinO -sinsino
(sintsino sintcosO coso -costsino J

1 = COS2 D sin 20 + sin2 COS20 -2 sinl cos cos0 sin0 coso
+ sin2 Asin 20 sin2 o

C = [sin2¢sin2o + (sinrcosO cost - cossin0) 2]-l.

(30)

(E.S(O) *E(t))Dp= JE. 12 exp(-iwt)
k2 r2

XN N
X L expliq [Rj(t) -i(0)]I

-* I3[1i ()Ak,', ZS3[ Pi WA, ',]). (37)

If the motion of particles is uncorrelated as in the case
of the bacteria population, the i #d j terms in Eq. (36)
and (37) give zero contribution, and we have simply

(ES(0) E (t)) = NjEoJ2 exp(-iwt)
k 2r2

X (expiq. [R(t) - R(O)]S*(O)S1 (t)), (38)

where R(t) is the center of mass coordinate of a typical
particle at t. Similarly

(Es(0) ES(t))Dp = NJEo 2 exp(-iwt)
k2 r2

X(explii7. R(t) - R(0)jjS*(0)S3(t)). (39)

The bracket average in all equations shown above
refers to two kinds of averages: namely, average over

(31) motions of the particles and average over their orien-
tations or direction of motions.

(32) In the photon correlation measurement what is usu-
ally measured is the so-called intermediate scattering

(33) function defined as

(34)

It is important to observe from Fig. 2 that for a sym-
metric body like a spheroid the scattering matrix T in
the body frame can depend only on the three angles
(0,X,) Therefore, the scattering matrix S in the lab-
oratory frame should also depend only on three angles,
for example (Ok~,). For a case of less-symmetric
body, S in general depends on relative angles of all four
vectors ,kI', and .

C. Scattered Field Autocorrelation Function
Consider a volume element in the medium illumi-

nated by the laser beam. It contains N identical
spheroidal scattering centers (bacteria) making random
motions. The scattered field can be expressed as

Es(t) = (E8 )= exp i (SlS4 (Et) exp(ikr) exp(-ii 7).~E, ,~=~epi~~t]~S 2A 0 -ikrjS = 1 S32o Ik
(35)

Take E0 = 0 as in Fig. 1, then the polarized component
of the scattered field autocorrelation function is

(ES(0) E(t)) IEo12exp(-it)
s~~~sP~k 

2r2

X ( E expliq Wj(t) -RAM)
i=l j=l

(36).

and the depolarized component of the scattered field
autocorrelation function is

F (it) = (E (0) E, (t))
( 1.E,(0) 2)

(40)

We shall calculate the intermediate scattering function
for nonmotile and motile bacteria in the following sec-
tions.

D. Scattered Intensity
Both polarized and depolarized intensities follow

from Eqs. (38) and (39) by setting t = 0. When we carry
out the orientational average, the result is
RPI -) _NjEoJ2 r2. At . sl.(,8)i2l
IQ8& - Iro2 do, J dOs sin0°S S3(0sJ 0,)I] 

(41)

It is seen that the scattered intensity is independent of
the state of motions of particles provided that their di-
rections of motion are random and isotropic.

E. Correlation Function for a Diffusing Particle7

This corresponds to a case when the bacteria are
nonmotile and can be treated as Brownian particles in
suspension. We have shown 6 7 that for a micron size
particle, only the translational diffusion contribution
is important, and in the time scale of interest the time
dependence of (t) can be neglected. Thus the mo-
tional average of the translational factor gives

(expliq - [(t) - R(O)lI) = exp (- B + -XA2

where the scaled time variable

x = Tq2flt

(42)

(43)
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depends on the average translational diffusion constant
D = (D1 + 2D )/3 and the eccentricity 3 = (DII -
D1 )ID of a spheroid,7 and

A -- q * 9 = sin0, [-cost/ sin() + sino/i(1 - cos())1/

[2(1 -cos(D)1/2. (44)

The orientationally averaged intermediate scattering
function is thus

| ()p ] = exp -X) exp -3) x"

52 d/ 5 dO s in0s [jSi(0.s/;) 1 exp[ X) 2 (s, /,8)]

M = 211' adO Sl(n08 s3 0)2
Jdo,) f dO, sings(0,(0)

z
wi
z

1= 0.1
-j

.01

F. Correlation Function for a Freely Translating
Particle 7

This corresponds to a case when the bacteria move
along straight lines for distances much longer than q-1 .
Furthermore, their motions are isotropic with a Max-
wellian speed distribution. 1 3 Again, there is no time
dependence for ?(t), and the motional average was
shown to be6

(expliq* [(t) - R(0)]I) =(1 - 2W2 ,u2 ) exp(-W 2 ,u2 ), (46)

where the scaled time variable

W= qt((V2)/6)l/ 2 , (47)

I -8I 36 Orieetation Ave
-- -- A-v. 144 Orientation Ave

RGD, a : 0.7pm, m = 1.007

60 80
8 (degrees)

100 120

Fig. 3. Relative scattering intensity vs scattering angle for polarized
radiation: a = 0.7 pim; a/b = 1.944; m = 1.007. This figure shows the
effect of increasing the number of orientations of the spheroid used

in averaging the scattered intensity over a randomly oriented en-

semble of cells. The RGD approximation is calculated with com-

pletely random orientations.

and (V2) is the rms speed of the Maxwellian distribu-
tion. The orientationally averaged intermediate scat-
tering function is therefore

22r dci 'd~sn 0 FI S1(0,,'i0.B 121
FJo iab Jo . din., El (O sa0,*(0) 12 1exp(-W2

tu
2)(1 - 2W2 2)

________________________°___°______________________________. (48)

tFs(qt)DpJ 57rdsfo ,f ds S3(0ssn/s)I 2]

111. Computation

The computer code for calculating the A-Y scattering
amplitude Tij in Eq. (27) was developed by Asano. 10 "14
We developed subroutines which transform T to S
matrix and then compute the intensity and intermedi-
ate scattering function. The code was written in For-
tran, and it was run with an IBM 360/95 computer at the
NASA Goddard Institute for Space Studies. 1 5 An av-
erage run time for a set of size parameters is about 2-6
min. The result contains all data for the intensities and
correlation functions at 40 scattering angles ranging
from () = 30 to 1200.

The orientational average indicated in Eqs. (41), (45),
and (48) are computed in the following sequence:

Lab frame

A

Body frame

|(II)

(III) iJ

At a given scattering angle A, we start by picking an
orientation of the spheroid in the laboratory frame
by specifying angles (6sX). A transformation [step (I)]
is then applied to find equivalent body frame angles
(0,0,):{cost = sinOs sin/i

cosO = sinO(cos/i sinfl + sin/i cos6a)

cost = [cos() - sin2
O. sini (cos/i sin@) + sink/i cos(a)]/D

D - 1(1 - sin2o, sin
2 /i)[1 - sin

2O8 (cos/i sine

+ sin/i cos) 2 ]1 /2.

From this set of body frame angles we then calculate
Tij(0,, ) by using Asano's code [step (II)]. Finally we
transform Tii to Sij by using transformation matrices
A and (B)-1 given in Eqs. (31) and (32) [step (III)].
With this Sij so obtained we then calculate all quantities
of interest for this orientation multiplying with a
weighting factor sinO, A 0, A0 . We then go to a next
orientation (O. + AOS,'S + Ak8 ) and repeat the process.
Three sets of orientational averages were tried: they
are 36, 144, and 324 orientations, respectively.
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IV. Results and Discussion

A. Scattered Intensity Distribution
For a homogeneous bacteria sample angular depen-

dence of the scattering intensity can be used to fix a set
of size parameters such as a, b and the relative index
of refraction M, 7 assuming the bacterium can be rep-
resented by a homogeneous solid spheroid. It is
therefore an essential first step before understanding
of the dynamic light scattering spectra can be at-
tempted. For the convenience of displaying measure-
ments we usually normalize the measured intensity at
an angle (D by that of = 270. This relative intensity
contains only the essential angular dependence of the
scattering matrix Sij 2 (in the case of A-Y scattering)
or the form factor I al (q, ) 12 (in the case of RGD scat-
tering).

Figure 3 shows the angular dependence of the relative
polarized scattered intensity. The solid line refers to
the orientationally averaged RGD approximation cal-
culated according to7

uu

IC

z
z
.1- 0.

a:

I

- a --- v.Y oO -70em,,m=I03
R G D, a .70m,m- 103

I I I I I

.01

20 40 60 80
8 (degrees)

100 120

I(Q8)RG I 1dyjaj(7,,u)j2,

I(270)RG I dJ dyja1 (oy)j2
(49)

where qo = 2k sin(27 0/2), and aj(q,yu) is given in Eq.
(20). The A-Y scattering intensity is calculated ac-
cording to Eq. (41). The orientational average is done
as described in Sec. III. In order to test the number of
orientations needed to achieve a full orientational av-
erage, we first pick 36 orientations uniformly over a
sphere. This gives a result shown by the dotted line.
Next, we increase the number of orientations over the
sphere to 144, and we get a result shown by the dashed
line. A further increase in number of orientations (324)
does not change the result significantly. Thus we es-
tablish a criterion that 144 orientations are needed to
achieve a good orientational average for the intensity
calculations. We, therefore, in all subsequent intensity
calculations, adopt 144 orientations as a sufficient av-
erage. As we can see from comparison of the dashed
line and the solid line that the RGD approximation is
excellent for the case a = 0.7 um, a/b = 1.944, and m =
1.007. We notice that while the A-Y scattering depends
both on the size parameters a and b and the relative
index of refraction m, the RGD does not depend on m.
Nevertheless we know that RGD is valid only when m
-11 << 1.

Figure 4 shows an effect of increasing m with the size
parameters kept fixed. At m = 1.03 we see that a larger
discrepancy occurs at a = 90°, and the RGD is in error
as much as 28% while the corresponding error for the
case m = 1.007 is only 9% (see Fig. 3). Also the intensity
minima predicted by RGD are slightly shifted from the
correct values.

Figure 5 shows an effect of increase the size parameter
a to 0.9 ,um, while m is kept at 1.007. The worst dis-
crepancy also occurs at 90°, but it is no more than
10%.

Fig. 4. Relative scattering intensity vs scattering angle for polarized
radiation: a = 0.7 Arm; a/b = 1.944; m = 1.03. The figure shows de-
viation of the RGD approximation from the A-Y theory for a relatively

large m.

- A- a .90pm,m1.007

RGD, a =90pm,m1.007

I I

Z

01 

0 20 40 60 80 100 120
S (degrees)

Fig. 5. Relative scattering intensity vs scattering angle for polarized
radiation: a = 0.9 Arm; a/b = 1.944; m = 1.007. The figure shows

effects of increasing the size of parameter a to 0.90 ,um.

Figure 6 shows a relative intensity of the depolarized
to the polarized components, calculated by the A-Y
theory for the standard parameters with Eq. (41). In
RGD this ratio is zero while in the A-Y theory this is no
more than 10-5 and is insignificant.
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Fig. 6. Relative depolarized scattering intensity vs scattering angle
for a case: a = 0.7 Arm; a/b = 1.944; m = 1.007, calculated based on
the A-Y theory. In the RGD approximation the depolarized com-
ponent of the scattered intensity is zero. This figure shows that the
depolarized scattered intensity is very small compared with the

polarized component at all angles.
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Fig. 9. Halfwidth of the intermediate scattering function vs scat-
tering angle for a diffusing cell.
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B. Correlation Function for Nonmotile Bacteria

In RGD the intermediate scattering function was
shown7 to be

F8(,t) = exp (- 2) ezp (X3

5 .x

Fig. 7. Intermediate scattering function vs X =- Dq
2

et for a diffusing
cell. The cell size is a = 0.7 gm, a/b = 1.944: (A)-RGD and A-Y
(144 orientations) for m = 1.007 and m = 1.03, - - - A-Y (36 orienta-
tions) for m = 1.007; (B) RGD and A-Y (144 orientations) for m =
1.007 and m = 1.03; (C) RGD and A-Y (144 orientations) for m = 1.007
and m = 1.03; (D) - RGD and A-Y (144 orientations) for m = 1.007,

--- A-Y (144 orientations) for m = 1.03.

J-1 dAIaj(i, A)2 exp(-xA2 )

fG dAIa(i7,A) 2

- (50)

which is independent of m. This is to be compared with
the rigorous result (45).

In Fig. 7 we plot F, (7,t) as a function of the reduced
time variable X defined in Eq. (43). Figure 7(A) illus-
trates sensitivity to the orientational average of the A-Y
calculation (45). We establish that 144 orientations are
necessary to achieve a full average. Thus all subse-
quent calculationsusethisnumberof averages. Sensi-
tivity to variation in m is also studied. For a = 0.7 kim
and a/b = 1.944, RGD results are indistinguishable from
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the A-Y calculations except at e = 870 [Fig. 7(D)].
Even at this angle the halfwidth of the correlation
function is practically the same in the two calculations.
Figure 8 displays results of sensitivity study of size
variation. We see that up to a = 0.9 4ttm RGD is an ex-
cellent approximation. Figure 9 plots halfwidth of the
correlation functions as a function of scattering angle
for both polarized and depolarized scatterings. We see
a striking similarity between X1/2 for both the polarized
and depolarized scatterings.

is reliable at all scattering angles for m = 1.007, but some
discrepancy is observable at large scattering angles for
m = 1.03 case. Figure 12 summarizes these results by
plotting halfwidths of the correlation function as a
function of scattering angles. Oscillations in W1 / 2 VS
e plot for motile bacteria E. coli has already been ob-
served in experiments.7 It is interesting to note that
similar oscillations exist in the depolarized part of the
scattering.

C. Correlation Function for Motile Bacteria
In RGD the intermediate scattering function was

shown7 to be

F (q t) =

I
E dyIai(itu)I2 (I - 2W2s2) exp(-W2g2)

f dgjaj(qyj2
where the reduced time variable W was given in Eq.
(47). This is again to be compared with the rigorous
result (48). In Fig. 10 plots of F (t) vs the reduced
variable W are shown. Figures 10(A) and 10(B) indi-
cate that in the case of free motions, 324 orientations are
necessary to achieve a complete orientational average
in the A-Y scattering, and we use this criterion for all
subsequent calculations. We vary both the size pa-
rameters and m in Figs. 10 and 11. We observe some
discrepancy between the A-Y calculations and RGD in
the tail part of the correlation functions. However, as
far as the halfwidths are concerned RGD approximation

V. Conclusion

We have formulated a general procedure by which the
scattered field amplitude correlation function, both
polarized and depolarized contributions, can be com-
puted for a collection of particles, once the one particle
scattering matrix Tij are given. These formula are
displayed explicitly in Eqs. (36) and (37), and the
transformation matrices to go from Tij to Sij are given
in Eqs. (30), (31), and (32). We have given an explicit
formula for the scattered intensity, both polarized and
depolarized, for a collection of randomly diffusing or
moving particles. Two specific cases for the interme-
diate scattering functions are worked out in detail:
diffusing particles and freely moving particles with a
Maxwellian speed distribution. We have then applied
the formalism to microorganisms suspended in a liquid
medium.
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Fig. 11. Intermediate scattering function vs W for motile cells: ....
RGD (random orientations); - A-Y (324 orientations). (A),(B) a
= 0.7 gm, a/b = 1.944, m = 1.03; (C),(D) a = 0.90 ,im, a/b = 1.944, m

= 1.007.
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Fig. 12. Halfwidth of the intermediate scattering function vs scattering angle for motile cells.

In the case of E. coli where the approximate size pa-
rameters and the relative index of refraction m are
known, we made a model calculation by assuming it to
be a spheroid with semimajor and minor axes a = 0.70
Aim, a/b = 1.944, and m = 1.007. Although this model
is too simple to account for all the light scattering
properties of E. coli,6 7 nevertheless it should be good
enough to test the validity of the RGD approximation.
We calculated the scattered intensity as a function of
scattering angle and show that the maximum deviation
of RGD occurs at about (D = 900, and it amounts to
about 10% error. The depolarized contribution is
shown to be completely negligible. The intermediate,
scattering functions for both nonmotile and motile cases
are calculated. As far as the halfwidths vs scattering
angles are concerned, RGD is certainly accurate to
better than 10%. This assessment renders the approach
taken in Refs. 6 and 7 meaningful because it shows that,
within 10% accuracy, one can learn about the detailed
motions of E. coli in suspension with a consistent use
of the RGD approximation. In this paper we limit
ourselves to studies of relatively simpler cases where the
orientation vector V is time independent. Even in
these cases interesting dependence of the halfwidth of
the correlation functions vs the scattering angle can be
observed. This dependence is absent in the case of
spherical particles. A more realistic case is to consider
time dependence of V(t) due to the rotational motion
and its coupling to the translational motions. One such
study was made in Ref. 9 with the RGD approxima-
tion.

We also made sensitivity studies of the results to
variations in the size parameters a, b, and the relative
index of refraction m. We show that for m > 1.03, RGD
could be in serious error in computing the intensity as
well as correlation functions. However, at m = 1.007,
for sizes up to a = 0.9 ,um and a/b - 1.944, the RGD
seems to be still quite accurate. We suspect that RGD
will gradually break down as the size of particle becomes
larger than a micron even if we take m = 1.007 to be

applicable to all microorganisms. Thus one has to be
quite cautious in applying the RGD to other micron-size
microorganisms, especially when m is known to be
higher than 1.007.
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